THE HAMPTON-SEABROOK ESTUARY

The Hampton-Seabrook Estuary is a dynamic, lively and expansive ecosystem featuring salt marshes, sand dunes, a barrier beach system, tidal waters, and freshwater streams and rivers. It contains NH's largest continuous area of salt marsh - covering 4,570 acres, and spans the towns of Hampton, Hampton Falls, and Seabrook, NH, and Salisbury, MA.

Graphic - Map of Estuary

WHAT IS AN ESTUARY?

Estuaries are transitional areas where freshwater from inland streams and rivers mix with saltwater from the ocean. The daily tides heavily influence the types of vegetation and wildlife that can thrive in this area.

Thousands of species of birds, mammals, fish, and other wildlife rely on estuaries for living, feeding, and reproducing. Estuaries offer ideal resting and feeding spots for migratory birds. Since many fish and wildlife use these waters for spawning, estuaries are often called the "nurseries of the sea." With rich marine life, estuaries offer valuable recreational and commercial opportunities.

WHAT IS A SALT MARSH?

Salt marshes are salty because they are flooded by seawater daily. They are marshy because their ground is composed of peat - decomposing plant matter that is waterlogged, root-filled, and very spongy.

Marsh grasses and peat filter pollutants such as herbicides, pesticides, and heavy metals out of the water. This filtered water creates a healthy hatchery and habitat for aquatic wildlife.

Salt marshes are covered with salt-tolerant plants. A salt marsh is divided into two main zones: **low marsh** and **high marsh**. The low marsh floods daily at high tide, while the high marsh floods about twice a month during very high tides associated with new and full moons. Plants with higher salt tolerance thrive in the low marsh, while those with lower tolerance grow in the high marsh.

How Estuary Protect Us

Estuaries, including their surrounding wetlands function as buffer zones. They stabilize shorelines and protect coastal areas, inland habitats, and human communities from floods and storm surges. When flooding does occur, peat often acts like huge sponges, soaking up the excess water.

This project was funded by the US Fish and Wildlife Service via the Wildlife Management Institute (logo)

SHEA logo